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Abstract 

The numerical simulation of the nuclear Boltzmann-Langevin equation is investigated for ide- 
alized two-dimensional nuclear matter. The equivalence of the lattice and test-particle methods are 
demonstrated for both the mean-held evolution, the average collision integral, and the agitation 
and growth of unstable collective modes for various densities and temperatures. 

1. Introduct ion 

Over the past decade, there has been considerable interest in time-dependent nu- 

clear mean-field theory, due in large part to its success in describing many aspects of 

intermediate-energy nuclear collisions [ 1 ]. In particular, the semiclassical version of 

the time-dependent Hartree-Fock model has been extended by incorporating a Pauli- 

suppressed collision term, leading to a Boltzmann-like dynamical description [2],  often 

denoted the BUU model i .  

* This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear 
Physics, Nuclear Physics Division of the US Department of Energy, under contract no. DE-AC03-76SF00098, 
and by the Commission of the European Community, under contract no. ERBCHBI-CT-930619. 

1 A variety of names have been employed in the literature: Boltzmann-Uehling-Uhlenbeck (BUU), Vlasov- 
Uehling-Uhlenbeck, Landau-Vlasov or Boltzmann-Nordheim-Vlasov. 
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Given the initial one-body phase-space density f ( r , p ,  t = 0), these theories produce 
a single trajectory for the system in the one-body phase space, f ( r ,  p, t). Consequently, 
they cannot provide a description of fluctuations and are therefore inadequate for address- 
ing such phenomena as correlations in light-particle emission, fluctuations of one-body 
observables and multifragmentation. In order to obtain a description of fluctuations in the 
evolution of the nuclear system, a suitable extension of the transport theory is required. 
In the work of Bixon and Zwanzig [3], a prescription was given for incorporating 
small-amplitude fluctuations around equilibrium into the Boltzmann equation. However, 
this method cannot be extended to large-amplitude fluctuations and non-equilibrium 
scenarios. 

A possible extension of the BUU-type transport theories was suggested by Ayik and 
Gregoire [4], consisting of the addition of a stochastic term in the equation of motion 
for the one-body density. The resulting Boltzmann-Langevin equation of motion is then 

a 
- ~ f ( r , p , t )  = { h [ f ] , f }  + I [ f ]  + 8I [ f ] .  (1) 

There are thus three distinct sources for the evolution of the one-body density. The first 
is the collisionless propagation of f in the self-consistent one-body field described by 
the effective hamiltonian h(r ,  p) ;  this part is often referred to as the Vlasov propagation 
and corresponds to the TDHF description. The second source of evolution is 7[ f ]  which 
represents the average effect of the residual two-body collisions; this is the term included 
in the BUU-type descriptions. The third term, 6 I [ f ] ,  is the new stochastic term and it 
is ordinarily assumed to represent the fluctuating effect of the two-body collisions. The 
collision term acts as a Langevin force on the one-body density which then evolves in a 
manner similar to brownian motion, giving rise to the term of the Boltzmann-Langevin 
theory. 

In Ref. [5] a Fokker-Planck transport formalism was developed for treating the BL 
problem and it offers a convenient formal framework for discussing stochastic one-body 
dynamics. It has been demonstrated that the Fokker-Planck approach is equivalent to 
the direct simulation of the BL equation [6]. Several applications have been made 
to fluctuations of one-body observables in nuclear dynamics [6-8] and it has been 
demonstrated that the lattice phase-space method (i) produces results that are in very 
good agreement with expectations based on statistical mechanics and (ii) is able to 
break symmetries that have been artificially imposed on the initial density, thus making 
the approach suitable for addressing multifragmentation processes. The purpose of the 
present paper is to compare this numerical method with the more familiar test-particle 
method, especially in the presence of instabilities when numerical errors are particularly 
critical. 

The presentation is organized as follows: In Section 2 we discuss different methods 
of discretization of the mean-field and the collision integral, and we compare the test- 
particle method with the lattice simulation. In Section 3 we discuss the growth of 
instabilities in spinodal nuclear matter and in Section 4 we illustrate the propagation 
and amplification of fluctuations for various densities and temperatures. Finally, Section 5 
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presents a concluding discussion. 

2. Numerical methods 

In the present study we ignore the spin-isospin degrees of freedom of the nucleons 

for simplicity, since their inclusion would have no bearing on our findings. 

2.1. Test-particle method 

Boltzmann-like equations can conveniently be solved by means of the so called test- 

particle method (see, for example, Ref. [2] ). The basic idea is to represent f ( r , p ,  t) 
by a large number of test particles, Af, 

AAc 
1 

f ( r , p ;  t) ,-~ ~ ~ 6(r  -- rn,p -- Pn; t). (2) 
n=l 

In order to calculate the Pauli suppression factors f r  = 1 - f ,  it is necessary to have 

a smooth density in momentum space. In our studies, this is achieved by performing a 
convolution with a normalized gaussian having a width O-p = 0.15h/fm. The collisionless 
part of the test-particle motion is governed by the newtonian equations of motion implied 
by the effective hamiltonian, while the collision integral is treated by a Monte Carlo 

method based on the specified nucleon-nucleon cross section O'NN ~ 40 mb [9]. It 
should be noted that the test-particle method is not intended to present any stochastic 

behavior. Indeed, the number of test particles per nucleon, .M, is merely a numerical 
parameter that should be chosen sufficiently large to render the results independent of A/'. 

However, even for large Af, there is always a remaining fluctuation and a finite numerical 
viscosity associated with the test-particle method, as will be discussed elsewhere [ 10]. 

2.2. Lattice method 

Spurious fluctuations can be avoided by discretizing the phase space on a lattice, 

thereby eliminating the need for Monte Carlo evaluations and thus obtained a truly 
deterministic evolution. The phase-space is then divided into a cartesian lattice of cells 
i -- (a ,  fl),  with a and fl labeling the lattice sites in position and momentum space, 
respectively. Each cell has the side lengths dr  and zip. The corresponding elementary 
phase-space volume is then zi/2 = (zirzip/h) D, where D is the dimension of the physi- 
cal space. Most computational problems associated with nuclear Vlasov dynamics arise 
from the need to have a smooth one-body density, so that derivatives are well behaved. 
In order to achieve a sufficiently fine paving of the phase space, the magnitudes of zir 
and zip should be smaller than the range of the nuclear force and the Fermi momen- 
tum, respectively. Typically, zir ~< 1 fm, while zip <~ 100 MeV/c. The discretization 
introduces a noiseless numerical error on the physical observables, which can be sys- 
tematically reduced by employing an increasing number of ever smaller cells, so the 
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degree of accuracy that can be obtained is limited only by the storage capability and by 

the corresponding rapid growth in computing time. 

2.2.1. Discretization of the mean field 
The discretization of the mean field is not a trivial problem, because conservation of 

particle number and energy is easily violated. We therefore discuss our adopted method 
in some detail. 

After discretization of the gradients, the total time derivative of the one-body distri- 

bution function f ~  reads, on a one-dimensional grid, 

~fO ~ + vl fa+l,~2Ar- fc~-l,fl + F f~,fl+12Ap- fa, f l -1 = 0, (3) 

where F,, is the force and vt~ the velocity. It is then straightforward to demonstrate that 

both particle number A, momentum P and energy E are conserved, to first order in 

time, 

d A : AS2 ~-~ 8 
dt ~ f  # = 0, (4) 

d 
dt = Ag2 ~ pfl fail = 0, 

aft 

dt 

provided the velocity and the force are given by 

Ah P2~+l -- P2~-1 Pfl+l + P~-l 
v f l -  Ap - 4mAp - 2m 

Ah U~+I - U,~-I 

Ar 2Ar ' 

P/3 
m 

m 

(5) 

(6) 

(7) 

(8) 

i.e. the standard lattice representations of the gradients of the hamiltonian h ~ .  
Adopting the above lattice scheme, we solve the Vlasov propagation on the lattice by 

means of a matrix method. The Vlasov equation then has the form 

[If(t))) = Adr l l f ( t ) ) )  + Mpllf(t))), (9) 

where f is considered as a supervector denoted IIf)), and .A,4r and .A//e are matrices 
which can be constructed from the effective field and the momenta, respectively, using 
Eq. (3).  The above equation can then be solved to second order in At, 

]lf(t + 2At))) = 1 + ( M r  +MA/lv)At 1 -- ( J ~  + ~ i l f ( t )  )) '  (10) 

requiring only the inversion of the matrix 1 - (.Mr + fi,4v)At. 
It is important to take account of the fact that the propagations in coordinate and 

momentum space do not commute, due to the position dependence of the force F. 
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Recalling that the self-consistent propagation of classical particles can be accurately 
solved by the following "leapfrog" algorithm [2]: 

r( t  + At) = r ( t -  At) +2At  p ( t ) ,  (11) 
m 

p( t  + 2At) = p ( t )  + 2AtF(t  + At), (12) 

we adopt the following algorithm: 

i i f , ) )  = 1 +.AAr[fm]At 
1 ~ ~ A t  [Ifm)), (13) 

1 + M v [ f t ] A t  
Ilfm+l))-- 1-- - -~p[ f ,  lAtl l f ' ) ) ,  (14) 

which propagates the density f from the time tm= 2mAt to the subsequent time tin+l, 
via the intermediate density f .  This method has proved to be numerically very accurate 

for conserving particle number, momentum and energy. 

2.2.2. Discretization of the collision integral 
As already discussed in the introduction, the stochastic collision term is decomposed 

into an average and a fluctuating part, 1 = 7 + 61. The average term expresses the mean 

rate of collisions from two phase-space dements 1 and 2 into two other phase-space 
elements 1 ~ and 2 t during a small time interval At, 

hl ,2 ;1 ' ,2 '  = f l  f2 f t ' f2 '  ~(rl2)c~(rl,2,)t~(rll, )to( 1,2; 1 ~, 2 t) Af2At. (15) 

Here f i  is the average value of f over the cell i and the Pauli suppression factor f r i  = 1 - 
f i  is the corresponding availability. The average collision integral 7 is obtained by adding 

all possible elementary contributions nl ,2 ;1 ' ,2 ' .  The transition rate for an elementary 
scattering process, co, is related to the differential cross section of the colliding nucleons, 

dCrNN/dO, which has been assumed to be independent of angle and energy. 
The numerical algorithm adopted for calculating the transition rate needs some care. 

Indeed, in the Boltzmann equation the collisions are assumed to be local in space, 
implying that the system may be described on scales smaller than that defined by 

the collision cross section, as is in fact needed for obtaining a reliable mean-field 
propagation. In order to have an algorithm that is as independent as possible of the 
actual coarse graining of the phase space, we have adopted the following procedure. 
The nucleons in a given cell are allowed to interact with those situated in a given 
number of neighboring cells. The side length of the corresponding cube, do = near, 
is taken to be near the interaction range implied by the actual nucleon-nucleon cross 
section, O'NN. All the nucleons included in the n ° cells interact with the nucleons of 
the considered cell, with a constant collision length ,~ that has been determined so that 
the total nucleon-nucleon collision cross section is preserved. The transition rate into a 
given final state 1~2 ~ is then calculated by requiring energy and momentum conservation, 
and by assuming that the particles remain at the same position in space. It is convenient 
to pre-calculate and store the transition rate co( 1,2; 1 ~, 2~). 
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For convenience, we use a collisional time step that is larger than that used for 

the mean-field propagation. We note that, in contrast with the test-particle method, the 
lattice method yields the Pauli blocking without numerical noise, since the occupancies 

are known at each lattice site. 

2.2.3. Treatment of the Langevin term 
Since the elementary collisions are regarded as independent random processes, the 

collision number nl,2,v,2, can be regarded as having a Poisson distribution, 

2 =4 .  (16) Or n 

Consequently, the stochastic term t~l can be produced by adding to the mean value 

41,2;1,,2, a fluctuation 6nl,2;1,,2, chosen randomly from a distribution with a variance equal 
to h (and vanishing mean value). It has been shown that the results are not sensitive to 

the particular form of the probability distribution employed [ 11 ], and therefore we use a 
normal distribution which is numerically more tractable. Since the number of collisions 
occurring during the small time interval At for a specific elementary process 12 ~ 1'2' 
is usually considerably smaller than unity, the fluctuating part 6n dominates over the 

mean value 4. Special care must then be taken to prevent the dynamical density f(n) 
from acquiring unphysical values (i.e. f < 0 which is not allowed in a semiclassical 

approximation or f > 1 which is forbidden by the Pauli exclusion principle). 
A reasonable treatment can be obtained by accumulating the fluctuations over a 

phase-space volume of magnitude h °,  corresponding to an entire nucleon [6]. This is 

a reasonable method because the fluctuations in the BL treatment arise from the basic 
physical fact that each elementary collision involves two entire nucleons. Therefore, 

we carry two different scales in the calculation, the basic scale used for computing the 
mean-field evolution and the average collision rate, and a larger scale used for calculating 
the fluctuations. It is important to match these scales correctly. Given four of the large 

cells, I, J, I ' ,  J ' ,  we consider elementary transitions of the form ij ~ i ' f ,  with i C 1, 
j C J, i' C I '  and f E J ' .  For each such type of transition, the actual number occurring 

is 

ni,j;i,,j, = 4i,j;i,,j, q- ¢~ni,j,i,,j, , (17) 

where the m e a n  4i,j,i,,j, is evaluated as explained above. The total rate of all such 

transitions is then given by 

NI,  J;I, , j ,  = NI ,  J;I, , j ,  --1- aNI ,J ; I , , j ,  , (18) 

where NI,J; I , , j ,  = ~-'~i,j,i',j' 4i,j,i',J ' '  On the basis of Ni, j;t,,j,, the fluctuation ~$NI, J;I,,j, 
may now be calculated using Eq. (16). Subsequently, the fluctuating part of each of the 
basic transitions, •ni,j,i',j' is obtained by sharing 6Nt,j;,,,j, in proportion to the mean 

rates, 

ni,j,i',j' ¢$N1,J;I,,j,. (19) 
6ni,j,i, ,j ,  = -N ,,j;I, ,J,  
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This method preserves the relation between mean and variance on the large scale, while 
correlating the fluctuations on the small scale, thus avoiding the inherent diverging 

behavior as the small scale is reduced. The scheme also has the advantage that the 
Vlasov propagation and the collision term are computed on the same small scale, thus 

ensuring high accuracy. 

3. Test of the dynamical simulation methods 

In order to get a better understanding of the transport equations, it is instructive to 
compare the test-particle and the lattice simulation methods both for the collision term 

and the mean-field propagation. 

3.1. Test of  the collision term 

For this purpose, we have studied a two-dimensional fermion gas in a constant effec- 
tive field. We may then employ a single spatial cell, with periodic boundary conditions. 
The initial momentum distribution has been chosen to be two touching Fermi spheres of 

radius PF = 275 MeV/c.  The lattice size in momentum space is Apx = Apy = 50 MeV/c  

and the entire lattice consists of 29 × 29 momentum cells. The nucleon-nucleon "cross 
section" was taken as 2.4 fm, corresponding to an interaction range of 1.2 fm. The time 

step was chosen equal to At = 2 fm/c.  The equations of motion were then followed 

numerically until approximate stationarity was reached. 
The corresponding density is shown in Fig. 1, with the histogram indicating the 

lattice result and the solid line being the test-particle result. For reference, the dashed 
line shows the associated Fermi-Dirac equilibrium distribution, 

i 0  

0 8  

0 6  

0 . 4  

o o 
O 

0 . 2  

OC 

. . . .  I . . . .  ] . . . .  I , , 

\ 

800 0 2 0 0  4 0 0  6 0 0  

M o m e n t u m  p (MeV/c) 

Fig. 1. The calculated stationary one-body density f ,  as a function of the momentum p, resulting from an 
initial configuration consisting of two touching Fermi spheres. Solid histogram: lattice simulation. Solid curve: 
test-particle simulation. Dashed curve: the Fermi-Dirac distribution corresponding to the specified density and 
energy. 
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Fig. 2. The relaxation of the anisotropy Q obtained when starting from the same initial configuration as in 
Fig. 1, calculated with either the lattice simulation (solid) or the test-particle method (dashed). 

fO(p)= [ l+exp(P-~m-lZ) /T]  -1, ( 2 0 )  

where/z  = 62.6 MeV and T = 31.6 MeV are determined by the specified initial density 

f (p ,  t). The excellent agreement among all three results gives us confidence in the 
numerical methods for treating the collision integral. 

As a further check, Fig. 2 displays the time evolution of the anisotropy, as measured 

by the quadrupole moment of the momentum distribution, 

Q = f dpxdpy (p2 x - p2y)f(px,Py) (21) 

f dpx dpy (p2 x -+ p2y) f(Px, Py)" 

The solid line is the lattice result, while the dashed line is the test-particle result. 

The anisotropy relaxes in the same manner in the two approaches, with a relaxation 
time approximately equal to 9 fm/c [6]. The agreement between the two numerical 

approaches can also be seen in Table 1, which shows the total number of collisions in 
one single time step for Fermi-Dirac distributions at different temperatures. The result 
of a direct numerical evaluation of the collision number is also shown. We note that the 
number of collisions increases with the temperature, as it should be because of the partial 

Table 1 
Collision rates a 

T (MeV) Exact Lattice Test particles 

3 2.23 2.59 3.73 
4 4.29 4.61 6.02 
5 7.20 7.74 8.62 
6 11.14 11.98 11.74 

a The total rate of  nucleon-nucleon collisions at normal density, 
for a Fermi-Dirac distribution prepared at a given temperature T, 
as obtained by either a direct numerical evaluation of the collision 
integral, or with the lattice and test-particle dynamical simulations. 
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relaxation of the Pauli blocking. Moreover, the increase is approximately quadratic in 

T, as expected [ 12,13 ]. 

3.2. Test of the mean-field propagation 

In this section we discuss how the mean-field propagates, both in the lattice and 
test-particle method. In particular, we analyze the behavior of nuclear matter in the 

spinodal zone of the phase diagram where uniform matter is unconditionally unstable 

against density fluctuations. We consider again a two-dimensional periodic box and use 

side lengths Lx = 63 fm and Ly = 21 fm. For the effective one-body field we employ a 
simplified Skyrme interaction [ 8 ], 

U(x) = A ~(x) + B , (22) 
Ps 

with A = -100 .3  MeV and B = 48 MeV. The saturation density Ps = 0.55 fm -2 

corresponds to a Fermi momentum of PF = 260 MeV/c. Furthermore, tS(x) is the 
local average of the density with respect to the transverse direction y, smeared in the 

x-direction with a gaussian of width O'r = 0.87 fm. It should be noticed that in the case 

of  the lattice calculation the lattice is introducing an additional smearing and therefore 

the gaussian width must be correspondingly reduced in order to compensate from this 

effect. 
Since we wish to study the behavior of the system in the spinodal region, the initial 

conditions are chosen as a uniform density P0 equal to half the saturation density ps 
and having a finite temperature equal to T = 3 MeV, which places the system near the 

center of the spinodal region [ 14]. 
In order to achieve a better understanding of the instabilities, we first consider the 

linearized Vlasov equation at zero temperature. The resulting dispersion relation is easy 
to derive [ 14] and for unstable systems it reads, 

h (e-~oo OU~peXp ))  [ p(e~po OU ) ) ] - , / 2  k + (-½k2a 2 + -~pexp(  ½k2a 2 , (23) 
tk nff 

where a = O-r/h, k is the wave number of the unstable mode and e0 is the Fermi energy 
associated with the specified initial density p0. The partial derivatives of the mean field 
are calculated at the actual density. 

In order to extract the actual dispersion relation from the numerical simulations, we 
have considered a slight harmonic perturbation on the initial uniform density along 
the x-direction. For each perturbation characterized by the wave number k, we have 
performed a pure Vlasov evolution and determined the growth time tk from the growth 
of the Fourier component of iS(x) corresponding to the wave number k. It has of course 
been verified that the linear response theory remains valid during the time needed to 
accurately compute the growth time, by checking that the Fourier components associated 
with the wave number different from the considered k were not becoming important 
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Fig. 3. The growth rate of instabilities, tk t as a function of the wave number k, obtained from either the 
dispersion relation (23) (dashed curve) or with the lattice (stars) and test-particle (circles) simulations. The 
error bars indicate the uncertainties associated with extracting the rate of the exponential growth rates. 

and by confirming that the growth of  the component associated with k was actually 

exponential. It was found that most of  the exponential growth persists up to about 

75 fm/c ,  after which time fragments are so well developed that the linear response 

treatment no longer applies. 
Fig. 3 displays the solutions to Eq. (23).  The stars and the circles represent the 

results obtained in the lattice and test-particle method, respectively. We note a quite 

good agreement between the analytical result (23) and the numerical simulations. The 

small differences between the two methods will be discussed in the next section. 

Of course, the complete dispersion relation must take into account collisional and 

temperature effects. For small temperatures, the dependence on T is only slight and so 

may be ignored. As for the effect of  the two-body collisions, their contribution has been 

shown to be rather negligible, within the relaxation-time approximation [ 15,16]. 

4. Test of unstable collective dynamics 

We now turn to the self-consistent dynamics of  the unstable collective modes. When 

considering such catastrophic processes, it is especially important to analyze how fluc- 

tuations are propagated by the unstable effective field. In order to establish a useful 

reference, we first present a brief summary of  the analysis made in Ref. [ 14]. 

4.1. Linear Vlasov propagation of  fluctuations 

In an infinite system the collective modes are plane waves, and so it is helpful to 

perform a Fourier analysis of  the density fluctuations for the considered ensemble, 

f  xax, e x p ( - i k ( x - x ' ) ) ( S p ( x , t ) 6 p ( x ' , t ) ) ,  (24) 

where 8p(x)  = ~(x )  - P o  represents the fluctuating part of  the matter density. Following 
Refs. [8,14],  we linearize the problem and concentrate on the collective part of  the 
response. Since there is a growing and a decaying eigenmode for each wave number 
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(labeled by the superscript u = + ) ,  the above variance consists of four terms, o-k = 
~ ,  o-~', each governed by a simple feedback equation of motion, 

d o - ~ ' ( t )  ' p + u' ~ ,  = 279 k ~ ÷ o- k ( t) .  (25) 
tk 

Here Df  ~' denotes the corresponding source term arising from the stochastic part of 
the collision integral, and the feedback arises from the response of the effective field, 
in accordance with the dispersion relation (23). These four equations can readily be 

solved analytically and the resulting time development for the variance coefficient o'k is 
then given by 

o-k(t) = 2D++tk s inh(Zt / tk)  + 4 D ~ - t  + 2o-++(0) s inh(2t / tk)  + 2o-~--(0), (26) 

Here o-~' (0) denotes the initial fluctuations, appropriately projected, which was assumed 
to fulfill the relation and o-~-+(0) = o-~--(0). We have also utilized that D ++ = D~-- 

and D ~ -  = D~ -+. It is thus clear that the presence of an instability will soon lead to an 
exponential growth of the corresponding variance o-k. 

4.2. Fluctuations induced by the numerical methods 

In order to be able to treat the stochastic evolution correctly, we must first fully 
understand the possible sources of fluctuation arising from the discretization procedures. 

In the case of  the lattice simulations, we have checked that initially uniform unstable 

matter does not evolve at all, in the absence of the stochastic part of the collision term 
61. This is due to the fact that no part of the Vlasov propagation algorithm is able to 

break the initial translational symmetry and because the effect of the average collision 
term 7 is completely deterministic in the lattice treatment. This demonstrates that the 

lattice method does not introduce additional fluctuations and so it provides a safe basis 
for treating stochastic dynamics. 

The situation is quite different in the test-particle method. Indeed, the finite value of 
A/" introduces fluctuations already in the initial state. This initial fluctuation is simple to 
calculate [ 17], 

Lx p 
O-k -- Ly .A/" (27) 

corresponding to a white noise spectrum (i.e. o-k is independent on the wave number 
k). 

In addition, the test-particle simulation also generates fluctuations in the dynamics, 
both from the Monte Carlo estimation of the collision term and from the propagation of 
the test particles [ 10]. 

As far as the average collision term is concerned, it is clear that the Monte Carlo 
estimation in effect acts as a stochastic collision term, due to the finite value of .A/'. 
Indeed, the contribution from 7 is completely analogous to the source term 79k of the 
Boltzmann-Langevin theory, except that is must be divided by A/'. 
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Fig. 4. The fluctuation coefficient ark as a function of  time, for the mode having k = 0.6 fm -1 ,  as obtained 
with either .N" = 500 (lower) or A/" = 90 (upper)  test particles per nucleon. The dashed curves represent fits 

based on Eq. (21) .  

Finally, since we are treating a gas of classical particles (the only quantum effect is 

the Pauli blocking in the collision integral), the calculations also contain fluctuations 

and correlations associated with the disordered propagation of the test particles in the 

effective field. So even if the initial fluctuations were artificially put to zero, density 
fluctuations will be generated as a result of the Vlasov propagation. In fact, the simulation 

is equivalent to molecular dynamics for the test particles and so it contains many-body 
correlations at this level [10,18]. These correlations provide an additional source of 
fluctuation which can be calculated as a function of the density and the temperature of 
the system [ 10]. When ./V" is increased, most of these effects diminish as powers of 
t/A/'. However, even in the limit of very large A/', a constant numerical viscosity on the 

one-body dynamics will remain [10]. 
Since disturbances are so quickly amplified in the spinodal zone no matter how large 

is l/A/" the numerical fluctuation will soon generate large fluctuations. Indeed, if we 
look at the asymptotic evolution, it follows from Eq. (26) that the magnitude of the 

++ fluctuations is given by o-~-+(0) + ,A t tk in the BUU test-particle simulation. We have 
then performed BUU calculations using a range of values for .hi. The time evolution 
of the fastest mode is shown in Fig. 4 for two different test-particle numbers. The time 
evolutions follow the form given in Eq. (26) which are also displayed in Fig. 4. This 

confirms the 1/A/" scaling. 
Fig. 5a shows the evolution of one particular density distribution (calculated in the 

test-particle method with A/" = 90), while Fig. 5b presents the fluctuation O-k computed 
over an ensemble containing 100 events. It is clear that the density irregularities quickly 

attain a sizable magnitude. 
This clearly demonstrates that any Langevin dynamics based on the test-particle 

method must be performed with a much larger number ./q', at least several thousand, in 
order to have results which are not dominated by numerical noise. However, as far as 
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spinodal instabilities are concerned, it has been suggested and explored in Ref. [17] 
that the numerical noise of  the test-particle method can be used as a fluctuation source 
in order to have a very schematic Langevin dynamics. Indeed, the noise of  the test- 
particle method can be tuned by employing a suitable number of  test particles A/" in 
order to mimic the behavior of  the most unstable mode found in the BL dynamics. In 
the present case the value A/" = 90 is predicted to achieve the above requirement and 
indeed we observe that Figs. 4 and 5 are remarkably similar to the prediction of  the 
BL simulations (Figs. 6 and 7, respectively). However, we would like to stress that this 
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ultra-simplified Langevin dynamics based on the noise induced by the finite sampling of  
the phase space is very crude an approximation which can only give qualitative answers 
when real collisions are considered. Therefore, in order to become really quantitative, 
better methods are clearly called for [ 19]. 

4.3. Lattice simulation of  BL dynamics 

Let us now turn to the study of the exact Boltzmann-Langevin dynamics performed 
on the lattice. We have used basic lattice spacings of  8x = ½ fm and ¢3p = 40 M e V / c  
which gives a fairly good phase-space paving resolution. 

We first focus on the evolution of the spatial density of  the system, which is displayed 
in Fig. 7a. Initially the system has a uniform density, but soon the fluctuations break 
this translational symmetry. Subsequently the fluctuations are rapidly amplified by the 
action of  the effective one-body field, thus leading towards fragment formation. 

Fig. 7b displays the coefficient o-~ as a function of the node number K = kL/2vr. It 
can be seen that certain modes are amplified more rapidly than others, in accordance 
with their respective characteristic times tk, and the final Fourier spectrum is therefore 
dominated by the most unstable modes. Eq. (26) provides a good understanding of the 
growth of the fluctuations. In fact, at early times, the fluctuation coefficient reflects the 
spectrum of  the initial noise and it grows linearly in time as the collective modes are 
agitated by the respective source terms. Subsequently, the instabilities start to manifest 
themselves and the rise becomes purely exponential. At still later times, beyond the 
linear regime, fragments begin to form and o'k(t) levels off. 

In order to better elucidate the dynamics in the spinodal zone, it is instructive to 
exhibit the dependence of  the diffusion coefficient and the instability growth times on 
the initial density and temperature. For that, we studied an ensemble of  50 events for a 
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density-temperature grid within the spinodal zone of our two-dimensional test system. 
The spectral analysis of the fluctuations provides the values of the source terms and 
the growth times. A typical fit using Eq. (26) is displayed in Fig. 6 (dashed) for a 
given point well inside the spinodal zone. We obtain Dk = 1.6 x 10 -3 c//fm 3 for the 
source term and tk = 38 fm/c for the growth time. These values agree well with those 
obtained analytically in Ref. [ 14] for Dk. Systematic comparisons are shown in Figs. 8 
and 9. The dashed lines represent the numerical BL lattice simulation, while the solid 
lines are analytical results obtained directly from the linear response theory for unstable 
systems [ 14]. (When making the comparison between the BL lattice simulations and 
the linear-response treatment, one should keep in mind that the method employed in 
Ref. [ 14] is only approximate, so perfect agreement should not be expected; a more 
refined method is presently being developed [20] .) The dependence on the temperature 
is stronger than on the density, as expected since the source term Dk is closely related 
to the rate of collisions in by the system [ 14], and this number is proportional to T 2 
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and ~ in 2D. In Fig. 9 we show the extracted growth times. The dependence of the 

growth time tk on temperature and density is weaker than for the diffusion coefficient, 
as one would also expect from simple considerations [ 16]. 

5. Conclusion 

In this paper we have shown how it is possible to describe catastrophic evolutions 
of nuclear matter within the nuclear Boltzmann transport theory, using a lattice method. 
The equivalence between this method and the more common test-particle method was 
demonstrated regarding the average one-body dynamics. The numerical errors and pos- 

sible noise of the two methods are discussed. The lattice treatment was then extended 
to incorporate the Langevin fluctuation term and we showed that the resulting approach 
is reliable for describing processes in which fluctuations play a decisive role, such as 
is expected in multifragmentation events. The BL model allows one to include both the 
stochastic collisions, which create the seeds for the density fluctuations, and the effective 
field, which propagates and amplifies them, thus leading the system towards fragmen- 
tation. We have shown how the early evolution can be quantitatively understood within 
linear response theory, with a dispersion relation that predicts the growth of instabilities 
to good accuracy. The dependence of the source terms on density and temperature was 

also briefly illustrated. 
This exposition complements earlier presentations and is intended to provide a better 

understanding of both the lattice method and the test-particle method, as well as their 
mutual relationship. 
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